
A direct method for modeling and unfolding developable surfaces and its

application to the Ventura Basin (California)

Boris Thiberta,*, Jean-Pierre Gratierb, Jean-Marie Morvana,c
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Abstract

In order to draw precise geological structures using scattered data, it is relevant to use criteria that integrate the kinematic properties of the

structure. For example, developable folds can be selected by the observation of constant-length deformation markers. By establishing an

accurate drawing of these folds, it is possible to precisely determine the geometrical limits of basin. We have developed a program,

DEVELOPABLE-MESH, that integrates these developability criteria: this program first builds a 3D mesh using criteria that are based on the

geometrical properties of developable surfaces; it then ‘slightly’ modifies the mesh to improve its developability; this mesh is finally

unfolded. This program has been tested on a natural example of the lateral evolution of a thrust system to a fold structure (Red Mountain area

in the Ventura basin). This particular structure has been already balanced by a trial and error method (UNFOLD program). This test confirms

the validity of our approach: the DEVELOPABLE-MESH program builds near perfect developable folded surfaces. Therefore, it is

geometrically coherent and can unfold these surfaces in a very short time. Moreover, the program is faster and can construct more complex

developable surfaces than other conventional unfolding techniques based on a common interpolator.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Data commonly available for drawing geological struc-

tures are generally either precise but very scattered (wells or

boreholes) or continuous but rather approximate (geophy-

sical data). Consequently, in order to draw precise

geological structures, other information on the geological

mechanism of structural development must be added to

these data. This idea was a major breakthrough and was first

introduced in the construction of geological cross-sections

by the so-called ‘cross-section balancing method’ (Dahl-

strom, 1969; Hossack, 1979). More recently, and in order to

progress toward a true 3D balancing method, other
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techniques have been developed for balancing folded

surfaces. At the present time, two types of folding

mechanisms have been investigated, either shear defor-

mation (Kerr et al., 1993) or flexural folding (Gratier et al.,

1991). The interest of balancing developable surfaces is that

the developability criterion is a strong constraint on the

geometry of the strata. A surface is developable if it can be

unfolded with length preservation into a flat surface (i.e. the

surface is not ‘stretched’ in the process). Classical

developable folds are class 1B fold (Ramsay, 1967), but

there are several other mechanisms of folding. Actually,

many layers do undergo area change during folding.

However, most of the time it is not possible to evaluate

the strain values along the layer. If strain values are not

known the geometry of the geological structure can only

rely on the geological and geophysical data and the

balancing process cannot be done. It is worth noting that

symmetrically, the local amount and distribution of strain
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cannot be calculated from the unfolding process because,

when a non-developable surface is laid flat, the location and

the characteristics of the residual strain depend on the path

of the unfolding process. Integrating developable layers in

surface balancing technique is possible even if there are

only a few numbers of developable layers in the

sedimentary pile. In fact, accurately drawing the geometry

of certain developable layers is a strong constraint for the

structural modeling of the whole sedimentary pile. But one

must be very careful at identifying those developable layers.

Developable layers are fairly easy to recognize by observing

deformation markers (for example, fossils) showing no

change in length along the neutral surface of the fold. This

may be observed on samples removed, for example, from

wells. The selection of a particular stratum that can be

considered to be developable is therefore the result of

careful observation of the folding mechanism and must be

derived from true independent data. Relatively thin layers of

carbonate rocks or sandstones are often pertinent. Faulting

is not a problem if it remains possible to separate the whole

folded competent layer into several patches of the develop-

able layer. Patches are defined by faults and connected lines.

Unfolding a thousand folded patches and restoring them

along their faulted boundaries was done, for example, with

this technique, for the Jura massif (Affolter and Gratier,

2004).

The problem of unfolding developable strata has been

extensively studied: Gratier et al. (1991) and Gratier and

Guillier (1993) developed the UNFOLD program to unfold

meshes by laying the rigid triangles of this mesh flat and

fitting them together by a least-square criterion. Lecomte et

al. (1994) developed the PATCH program that uses spline

functions to model strata and lay them flat like Bennis et al.

(1991) did for other applications. The work of Sansom

(1996), Rouby et al. (2000) andWilliams et al. (1997) is also

worthy of mention as they introduced complementary

options. All these authors developed specific algorithms

approximately following the best-fit mesh restoration

principle. An alternative way proposed by Lévy and Mallet

(1998) and Dunbar and Cook (2003) is to minimize the

residual strain in the restored state. In this case the minimum

strain criterion is analogous to and replaces the least-square

fit criterion mentioned above. In all these methods, as in

cross-section balancing, the process is a trial and error

method. It is assumed that a balanced structure must be

restorable to its initial undeformed state with respect to both

the data and some additional constraints on the deformation

mechanisms (as length preservation). Consequently, the

initial geometry of the stratum has to be first established.

Meshing with interpolation of raw data is an important step

in the processing. It is generally necessary to smooth the raw

data in order to avoid parasitic folds created by the program.

This process may slightly shift the folded surface away from

the raw data. This initial geometry is then unfolded. If the

result is successful, for example, if the fitting criteria in

the UNFOLD program are low enough (Gratier et al., 1991),
the surface is considered to be a possible solution that is

both compatible with the data and in agreement with the

observed deformation mechanisms. If the fitting indicators

are not sufficiently low, it may be necessary to redraw the

surface. The whole trial and error process is rather time

consuming.

A quite different approach is used in the present study.

The aim is to directly draw surfaces that integrate the

structural development mechanisms (the kinematic proper-

ties of the structures). A similar idea was used by Thibaut et

al. (1996) to model fault surfaces. Observing that two solid

rocks slipping on each other generate a thread surface, they

modeled the fault surfaces by adding a thread criterion (i.e. a

geometrical criterion) to the data. For the developable

surfaces described in the present study, the idea is to focus

directly on their 3D construction. To this end, the

geometrical properties of developable smooth surfaces are

integrated into the surface construction; a step to improve

mesh developability is then added. The 3D mesh is therefore

generally ‘almost’ developable (in the sense that its

coefficient of length deformation is very small) and

restoration of the mesh to its initial horizontal state is

presumed to be easier than with other approaches. The aim

is to skip the trial and error process and draw the

developable surface directly.

Direct 3D construction of this type is also required in the

modeling of mass transfer through sedimentary basins.

Starting from true natural examples, two steps are needed

(Cornu et al., 2002): a first step to restore the structure and

assess the displacement field, and a second step to perform

mass transfer forward modeling. In this case the geometry of

the folded and faulted structure must be truly and directly

restorable.
2. Characteristics of developable surfaces

The aim of this paper is to propose a mesh-type modeling

process for developable strata. The geological property

whereby a stratum is developable is linked to the

geometrical property whereby the associated surface is

developable.

In this part, after reviewing the main properties of

smooth developable surfaces, some definitions relative to

developable meshes are given. An example of a dome

modeled by a developable mesh is then proposed. Finally,

using an example, the importance of integrating geometrical

properties of smooth surfaces (rules) in order to build

reliable developable meshes is illustrated.

2.1. Developable smooth surfaces

S is assumed to be a smooth surface (i.e. locally

parameterized by a function that can be differentiated

twice) of the Euclidean space R3. The surface S is assumed

to be ‘like a folded sheet of paper’: it was initially flat and
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has been deformed without changing the distances on the

surface between every pair of points. In the language of

differential geometry, such a surface S is said to be globally

isometric to a flat surface. These surfaces have been

extensively studied in mathematics (Hartman and Wintner,

1950, 1951; Hartman and Nirenberg, 1959). Despite their

general interest, only a few studies have been undertaken in

geology, as summarized in the work of Lisle (1992).

A remarkable property of this kind of surface has to do

with Gaussian curvature. To explain this, certain notions of

curvature are introduced. At a point p of a surface S, two

lines of curvature c1(p) and c2(p) can be defined (Fig. 1a).

The curvatures of these two lines at the point p are the

principal curvatures k1(p) and k2(p). The Gaussian curvature

of S at a point p is, by definition, GSðpÞZk1ðpÞk2ðpÞ.

Although the two principal curvatures k1(p) and k2(p) of

a surface at a point p are modified during isometric

deformation, the Gaussian curvature GS(p) is constant

(this is a consequence of Gauss’s Theorema Egregium,

which states that the Gaussian curvature is invariant under

local isometry; see Do Carmo (1976) for instance). In the

present case, this implies that the Gaussian curvature GS(p)

at a point p is equal to the Gaussian curvature of a flat

surface, that is to say zero. By definition, a surface is said to

be developable if its Gaussian curvature is equal to zero.
Fig. 1. Properties of smooth surfaces. (a) The two lines of curvature passing throug

surfaces: for every point p, there exists a segment Cp that is included in the surfac

Examples of smooth developable surfaces: the cylinder, the cone, and a combina
It may be noted that, at each point p of a smooth

developable surface S, at least one of the two curvatures

k1(p) and k2(p) is equal to zero. Cones, cylindrical surfaces

and tangential surfaces are classical examples of developable

smooth surfaces (see Fig. 1c and Lisle (1992)). There is no

general classification of developable surfaces. However, a

smooth developable surface satisfies the following properties

(see Hartman and Nirenberg (1959) for more details):
†

h a

e a

tion
For every point p in S, there exists a segment Cp, which is

included in S and which contains p (see Fig. 1b). The

segment Cp is called a rule.
†
 The direction of the normals along a rule Cp is constant.
†
 If the curvature of the surface S at a point p is not null, then

the curvature of the surface S at every point of the ruleCp is

not null.

The use of smooth developable surfaces for interpolating

developable strata was considered, but interpolation with

such surfaces is rather complex (for example, use of a spline

function). On the contrary, meshes are well-suited to the

problem:
–
 scattered data available in natural structures may be used

to build a mesh,
point p of a smooth surface. (b) Some properties of developable smooth

nd which contains p; the normal to the surface is constant along Cp. (c)

of planar/cylindrical/conical surface.
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Fig

com
the developability criterion is quite easy to define onamesh,
–
 mesh unfolding is fast.
2.2. Developable meshes

It is assumed here that T is a mesh (i.e. a surface composed

of triangles such that the intersection of two triangles is

empty or equal to an edge or equal to a vertex). Moreover, it

is assumed that T is also globally isometric to a flat mesh (it

can be unfolded without changing the distances of the

curves).

As in the smooth case, this property relates to Gaussian

curvature. Aleksandrov and Zalgaller (1967) defined the

Gaussian curvature GT(p) of T at a vertex p as being the

angular defect to 3608 (see Fig. 2a). If the mesh T is globally

isometric to a flat surface, then its Gaussian curvature is equal

to zero at each interior vertex. As in the smooth case, mesh is

said to be developable if its Gaussian curvature is equal to

zero at each interior vertex.

A new notion is introduced, related to the discrete

Gaussian curvature. Let Sp be a curve of T composed of

points that are at a distance r from the vertex p. If r is small

enough, the length of this curve is exactly lZar (where a is
. 2. Meshes. (a) The Gaussian curvature (i.e. the angular defect) at a vertex

posed of every point that is at a distance r from a vertex p of a mesh T. (c) T
the sum of the angles at the vertex p in radians). If the mesh T

is developable, then this length is exactly ldevZ2pr.

Therefore, the coefficient of length deformation (see

Fig. 2b and c) is defined by:

coefðpÞZ
lK ldev

ldev
Z

ar K2pr

2pr
Z

GT ðpÞ

360
:

2.3. Modeling a dome

Dome structures are very common in petroleum studies

and can function as oil traps. It is often assumed that such a

structure necessarily develops with surface length change.

However, a dome structure can also be a true developable

surface without any surface length change. Fig. 2d shows an

example of a folded sheet of paper that models a dome with

kink structure. Such a structure must always include a non-

convex area; from the top vertex, a valley must lie between

two edges.

2.4. Fitting a developable surface to a cloud of points

Consider the following problem: a cloud of points is given

(based on an unknown smooth surface S) and a mesh based
p of a mesh T: GT ðpÞZ360K ða1Ca2Ca3Ca4Ca5Þ. (b) The curve Sp

he curve Sp in the case where T is a flat mesh. (d) A folded sheet of paper.
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on these points must be built with the mesh geometry being

‘close’ to the geometry of S. Of course, there are many

possible meshes containing these points. Even if the

constraint of being developable is added, there are still

many meshes containing these points and that have different

geometrical properties.

To illustrate this phenomenon, the following example

has been built (see Fig. 3): a cloud of points belonging to

a half-cylinder is considered (Fig. 3a) and two develop-

able meshes are built whose vertices are exactly these

points (Fig. 3c and e). The mesh of Fig. 3c is half a

Schwarz lantern (which is a well-known example). Since

the two meshes and the half-cylinder are developable,

they are unfolded. Note that the unfolded surfaces of the
Fig. 3. Two meshes with the same set of vertices of half a cylinder. (a) Half a cylin

the vertices belong to the half cylinder. (d) Unfolding of the half Schwarz lantern.

lantern. (f) Unfolding of the mesh in (e).
two meshes are very different: the unfolded mesh 3f is

close to the unfolded half-cylinder (Fig. 3b) while the

unfolding of the half Schwarz lantern (Fig. 3d) results in a

very different form from the unfolded half-cylinder. This

phenomenon is more striking when the number of vertices

is increased (Morvan and Thibert, 2002).

It is worth noting that, in this example, the geometry of the

mesh in Fig. 3e is close to the geometry of the smooth

developable surface, in the sense that many edges of the mesh

in Fig. 3e are ‘rules’ of the half-cylinder (i.e. segments

included in the half-cylinder). This is not the case for the

mesh in Fig. 3c: no edge in the mesh in Fig. 3c corresponds to

the ‘rules’ of the half-cylinder.

Therefore, the idea of the algorithm proposed here is to
der. (b) Unfolding of the half cylinder. (c) Half a Schwarz lantern in which

(e) A mesh in which the vertices are exactly the vertices of the half Schwarz
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integrate geometrical properties of developable meshes into

mesh construction in order to build reliable, developable

meshes.
3. Construction of developable meshes

This part explains the construction of developable meshes

and their unfolding. The algorithm of the DEVELOPABLE-

MESH program is described. This algorithm is composed of:
†

Fig

1. (

zon

Exp

The

crit

sati

inte
A sub-routine Triangulate, which builds a mesh using

certain geometrical properties of developable meshes

(Section 3.1).
†
 A sub-routine Modify, which optimizes the developability

of a mesh by ‘slightly disturbing’ it (Section 3.2).
†
 A sub-routine made by Sheffer and De Sturler (2001),

which unfolds a mesh (Section 3.3).
3.1. Construction of a mesh (Triangulate sub-routine)

The key idea of the algorithm is to integrate geometrical

properties of developable surfaces in the mesh construction.

More precisely, using the properties of developable smooth

surfaces introduced in Section 2.1 (and in Fig. 1b), two kinds

of areas are determined:
†
 areas where the surface is flat or cylindrical;
†
 areas that are not flat and for which certain rules Cp are

determined.

Algorithm inputs: the input data are composed of:
†
 A family of level set curves C1,.,Cn (see Fig. 4a for

instance). The curves Ci represent strike-lines. Each curve

Ci is polygonal and is included in a horizontal plane ‘zZ
constant’. The orthogonal projections of any two level set

curves in the plane ‘zZ0’ do not intersect.
†
 A closed plane curve B (polygonal) in the plane ‘zZ0’.
†
 A family of parameters linked to notions of scale and

tolerated errors.

Output: The output is a mesh T, the orthogonal projection

of which onto the plane ‘zZ0’ is a mesh of boundary B.

Sketch of the Triangulate sub-routine algorithm (3 steps):
1.
 The algorithm determines ‘areas’ where the surface seems
. 4. Algorithm of the Triangulate sub-routine (all the polygonal level curves are see

a) The initial level curves Ci. (b) Every ‘straight zone’ is replaced by a long segm

es’ on every level curve Ci. (e) A family F of triplets of ‘curved zones’. (f) The

lanation of the normal criterion: if S is a smooth developable surface, then the norm

normal criterion is satisfied because the normals of the three zones zi are close to o

erion is not satisfied (because it is not satisfied for the two zones v1 and u2). (j)

sfied). (k) A family of triplets of ‘curved zones’ that satisfies all the criteria. (l

rsection criterion (because the orthogonal projections of the two segments [p1, q2
to be cylindrical or flat. During this step, some edges of

C1,.,Cn are removed where the surface seems to be flat

or cylindrical and are replaced by other edges (bold edges

in Fig. 4b) that are assimilated to ‘flat zones’. C denotes

the set of new edges (bold edges in Fig. 4c).
2.
 The algorithm then determines ‘areas’ where the surface is

curved (bold edges in Fig. 4d) and determines certain

surface rules. During this step, some edges are added to

the set of edges C: these edges are assimilated to surface

‘rules’ (bold edges in Fig. 4f).
3.
 The algorithm finally builds a mesh T so that the edges of

C belong to T and so that the orthogonal projection of T on

the plane ‘zZ0’ is a mesh of boundary B.

Details of the three steps of this algorithm are given

below, and especially steps 1 and 2, which use the

geometrical properties of developable surfaces.

3.1.1. Determination of flat or cylindrical ‘zones’ (Step 1)

If a plane S is cut by two parallel planes (which are not

parallel to S), it produces two segments that are parallel. If a

horizontal cylinder S is intersected by two horizontal planes,

it also produces two segments that are parallel.

Therefore, to mimic the smooth case, pairs of parallel

segments must be determined (by using the set of level

curves, see Fig. 4a). Each pair will be assimilated to a ‘flat

zone’ (see Fig. 4c).

Sketch of the algorithm of Step 1:

This algorithm depends on three parameters. Two

parameters kS and ep are linked to tolerated errors and one

parameter LS is linked to a notion of scale.
(a)
n

e

n

T

)

]

Determination of ‘straight zones’: for every planar

polygonal curve Ci, every piece of ‘straight zone’ (i.e.

a zone of length greater than LS and such that the sine of

the angle between the normal of two edges of the zone is

less than kS) is ‘replaced’ by a segment (Fig. 4b).
(b)
 Determination of pairs of ‘parallel straight zones’: each

set of two segments determined in Step 1(a) is checked to

see whether they are ‘almost parallel’ (i.e. whether the

sine of the angle between the two segments is less than

ep) and ‘close’ to each another.
(c)
 Elimination of segments with orthogonal projection in

the plane ‘zZ0’ intersect: if two segments have

intersecting projections, they are ‘shortened’ so as to

remove the intersection.
from above—they do not lie in the same horizontal plane). (a)–(c) Step

nt (shaded). (c) The ‘flat zones’ (shaded). (d)–(f) Step 2. (d) ‘Curved

segments (associated with the rules) added to the set of edges C. (g)

als Pð~niÞ to level curves Ci along a rule Cp have the same direction. (h)

e another (but the alignment criterion is not satisfied). (i) The convexity

he convexity criterion is satisfied (but the alignment criterion is not

A family of triplets of ‘curved zones’ that does not satisfy the non-

and [p2, q1] on the plane ‘zZ0’ intersect).
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(d)
 Each pair of ‘parallel straight zones’, is associated with a

closed polygonal curve composed of four vertices (Fig.

4c). This curve is assimilated to a ‘flat zone’ because the

four vertices are ‘almost’ planar. All the edges of the

closed polygonal curves are added to the set C.
3.1.2. Determination of segments (assimilated to ‘rules’)

(Step 2)

Using the set of level curves (Fig. 4d), the aim is to

determine a set of segments (assimilated to ‘rules’). The idea

is first of all to ‘gather’ zones zi, zj, zk of level curves

(respectively, Ci, Cj, Ck); then, two segments [pi, pj] and [pj,

pk] (where pi is a vertex of the zone Ci) are associated with

each triplet of zones (zi, zj, zk). These segments are added to

the set C.

The determination of the triplets (zi, zj, zk) is based on the

geometrical properties of developable smooth surfaces (see

the Proposal in Section 2.1 and Fig. 4g) and integrates the

following criteria:
1.
 Curvature criterion: ‘zones’ are gathered for which the

‘curvature’ is larger than a value b fixed by the user.
2.
 Normal criterion: ‘zones’ are gathered for which the

normals are close (the explanation of this criterion is

illustrated in Fig. 4g; an example of a triplet (zi, zj, zk)

satisfying this criterion is given in Fig. 4h).
3.
 Convexity criterion: ‘zones’ are gathered which have a

similar convexity (locally on the same side of their

oriented normal; see Fig. 4j).
4.
 Non-intersection criterion: we gather ‘zones’ whose

orthogonal projections onto the plane ‘zZ0’ do not

intersect (see Fig. 4k).
5.
 Alignment criterion: ‘zones’ are gathered, which are

aligned along the same segment (for example, this

criterion is satisfied in Fig. 4k and not in Fig. 4l).
6.
 Neighborhood criterion: ‘zones’ are gathered, which

belong to level curves that are close to one another (for

example, in Fig. 4d, the three level curves C1, C2 and C3

satisfy this criterion because there is no level curve

between C1 and C2 and between C2 and C3).

Sketch of the algorithm of Step 2 (Fig. 4d–f):

This algorithm depends on eight parameters. The

parameters b, pa, pn, pc, aa, an, ac, kc are linked to tolerated

errors and the parameter Lc is linked to a notion of scale.
(a)
 Determination of ‘curved zones’: for every planar

polygonal curve Ci, zones of length less than Lc are

determined and along which the normal varies by more

than a minimum angle kc.
(b)
 For every triplet of planar polygonal curves Ci, Cj, Ck

(satisfying the neighborhood criterion):
(b.1)
 All the families FZ{(zi, zj, zk)} of triplets of ‘curved

zones’ (where zi3Ci) compatible with the non-

intersection criterion are determined.
(b.2)
 For every family F, all the triplets rZ(zi, zj, zk) are

removed so that:
EaðrÞOaa
or

EnðrÞOan
or

EcðrÞOac;
where Ea is an error function measuring the alignment of

the three zones of r, En is an error function measuring

whether the normals of the three zones are close and Ec is

an error function measuring whether the three zones have

a compatible convexity.
(b.3)
 For every family of triplets of ‘curved zones’ F, the

following error is calculated:
EðFÞZ
X

r triplet of F

paEaðrÞCpnEnðrÞCpcEcðrÞ
where pa, pn and pc are the weights associated with the

alignment, normals and convexity errors.
Only the family F of triplets with minimum error E(F) is

retained.
(b.4)
 Two segments [pi, pj] and [pj, pk] (which are put in the

set C; see Fig. 4f) are associated with each triplet rZ(zi,

zj, zk) of F.
3.1.3. A constrained mesh (step 3)

At this stage of the construction, a mesh has not yet been

defined, but only a set of vertices V and a set of segments S

created by the two first steps of the algorithm (and also

containing, respectively, the vertices and edges of the plane

curve B).

This step shows how to build a mesh in which the set of

vertices contains V and the set of edges contains S. The

classical Constrained Delaunay Triangulation theory is used.

However, this particular triangulation only exists in 2D (and

not in 3D). Therefore, the procedure used is as follows:
1.
 First the constraints V and S are projected onto the

horizontal plane ‘zZ0’.
2.
 Then, using the Constrained Delaunay Triangulation

algorithm (implemented in the library CGAL), a 2D

triangulation is built in which the set of vertices contains
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the projection of V and the set of edges contains the

projection of S.
3.
 The triangles that are outside the plane curve B are then

deleted.
4.
 Finally, all the vertices of the mesh are raised.

Note that the construction of a mesh is based on properties

of developable smooth surfaces. However, it is not

necessarily developable in general. This explains why it is

necessary to modify the mesh T so as to make it developable

(or ‘almost’ developable).

3.2. Optimization of mesh developability (Modify sub-

routine)

The mesh produced by the Triangulate sub-routine is not

developable in general. Consequently, a sub-routine is

proposed here that decreases the coefficient of length

deformation (see Fig. 2b and c) of a mesh by ‘slightly

disturbing’ it. Two algorithms disturbing a mesh iteratively

are proposed (the user can use one or both of them):
†
 an algorithm that modifies the position of the vertices

(Section 3.2.1),
†
 an algorithm that ‘flips’ some edges (Section 3.2.2).
3.2.1. Modification of vertex position:

This algorithm depends on two parameters r and h.

Parameter r governs the size of a neighborhood of every

vertex of the mesh. Parameter h is related to the distance

between two positions that a vertex of the mesh can have.

In this algorithm, a mesh T is modified iteratively. A

sequence of meshes Tn is built in the following manner: let

T0ZT; at step n, a vertex p of the mesh Tn is chosen at

random. Two choices (fixed by the user) are available for

calculating its new position:
1.
 Either random choice of the new position of the vertex p in

the neighborhood of the vertex of the initial mesh T0,
2.
 Or choice of the new position in the 3D direction that

locally minimizes the Gaussian curvature of Tn at the

vertex p. This direction is given by the vector (calculated

by Desbrun et al. (2002)):

VpGTn
ðpÞZ

X

q neighbor of p

cota1;pq Ccota2;pq

kpKqk2
:

The line Lp spanned by the vertex p and the vector VpGTn

ðpÞ is determined (Fig. 5a). The new position of p is on the

line Lp at a distance h from p (if the new position is not too

far from the position of the vertex p of the initial mesh T0).

Then, let �Tn denote the mesh Tn for which the position of

the vertex p has been changed. If supp2�Tn
G �Tn

ðpÞ
�� ��%
supp2Tn
GTn

ðpÞ
�� ��, then TnC1Z �Tn is chosen, otherwise TnC1Z

Tn is chosen.
3.2.2. Flipping some edges of the mesh

In this algorithm, a mesh T is iteratively modified without

changing the position of its vertices. Only some edges are

flipped. The sequence of meshes Tn is built in the following

manner: let T0ZT; at step n, an edge [pn, qn] of the mesh Tn is

chosen at random (see Fig. 5b). If the triangles rnsnqn and

pnsnrn do not exist and if a1Ca2!p and b1Cb2!p, then the

edge [pn, qn] is flipped into the edge [rn, sn]. The new mesh is

denoted by �Tn.

If supp2�Tn
G �Tn

ðpÞ
�� ��%supp2Tn

GTn
ðpÞ

�� ��, then TnC1Z �Tn, is

chosen, otherwise TnC1ZTn is chosen.
3.3. Unfolding

The two sub-routines Triangulate and Modify build a

mesh that is not developable in general, but in which the

coefficient of length deformation coef(p) is ‘small’ for every

vertex p (this coefficient measures the non-developability of a

mesh). Therefore the mesh is ‘almost’ developable and it is

possible to unfold it. However, since it is not completely

developable, it cannot be unfolded directly: it was decided

therefore to use a program developed by Sheffer and De

Sturler (2001) based on a global method.

Their algorithm uses the following idea: if all the angles of

a flat mesh and the length of one edge are known, then the flat

mesh can be reconstructed. Therefore, by minimizing the

energy linked to the deformation of the angles, the algorithm

of Sheffer and De Sturler (2001) builds a family of angles that

satisfies the constraints linked to flat meshes, from which a

flat mesh can be reconstructed.
4. Application to the Ventura Basin

The Ventura basin is an area of oil fields that have been

intensively drilled. For example, by studying thousands of oil

wells onshore, the Ventura Basin Study Group built up

numerous cross-sections connecting the wells (Hopps et al.,

1995). This database is available on the web site of the UCSB

(http://www.crustal.ucsb.edu/projects/hopps/). Other data

were gathered from several offshore and onshore studies

(Jackson and Yeats, 1982; Yeats, 1983; Hupfile, 1991; Heck,

1998; Sorlien and Kamerlin, 1998; Kamerlin and Sorlien,

1999). All these data were used to study the 3D lateral

evolution of a large thrust system (RedMountain Thrust) into

a regional fold (Fig. 6). In such a non-cylindrical structure,

the balanced cross-section technique cannot be applied since

the basic assumptions (parallel displacements) are not

respected. In such a case, the balanced map technique can

be used in order to test the possible unfolding of a reference

layer. As summarized in the introduction, map-balancing

method comprises several steps. The initial geometry of the

http://www.crustal.ucsb.edu/projects/hopps/


Fig. 5. Algorithm of the Modify sub-routine. (a) The direction that locally optimizes the Gaussian curvature at the vertex p is the line Lp spanned by the vector

VpGTn
ðpÞ. (b) Flipping of the edge [pn, qn].
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structure, mostly in the form of a structure contour map, must

be drawn up in all cases.

This first step was completed for the same horizon over the

entire area (Vaqueros Formation made up of a thin layer of

dolomite). This involved extrapolating the data both below

the level of the deepest oil well and above the present erosion

level in the cross-section (Fig. 6). To this end, the shape of the

folds was measured in areas with a good data coverage. It was
Fig. 6. Data on the Red Mountain Thrust: two examples of the numerous cross-s

indicated in meters refer to a reference plane 0 located at K9150 m). The yellow

curvature (black lines) show how the geometry of the strata has been derived from t

Red areas correspond to the map view of thrusts and backthrust (see Fig. 7).
found that, when considering a large part of the series (several

thousand meters thick) the folds are of class 1C type

(Ramsay, 1967). In more detail, this general shape is a

combination of class 1B folds (constant thickness folded

layersZcompetent layersZVaqueros Formation) and class 2

folds (similar foldsZincompetent layers). Consequently,

class 1C rules were used to extrapolate the general shape of

the competent layer (Vaqueros formation) that is likely to
ections and the balanced structure contour map (all positive contour lines

lines are the trace of the wells. Fold shape analyses based on equal line

he data on cross-sections. The names of folds and faults are labeled in Fig. 7.
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have been deformed with constant thickness (see Fig. 6). The

structure contour map was digitized (Fig. 6). The initial

stratum has been broken up into six different pieces, called

patches, defined by faults and connecting lines. The two

following types of map restoration method for each patch

were then used:
†
 The UNFOLD program allows the geometrical compat-

ibility of the surface to be tested using a trial and error

method (Gratier et al., 1991). This technique has been

widely presented in previous papers, including an

application to the entire Los Angeles and Ventura basin

(Gratier et al., 1999) and will not be detailed here. The

initial surface is meshed by rigid triangles using the GMT

gridding function; the rigid triangles are then laid flat

consecutively with the position of each triangle versus

their neighbors determined by a least-squares method.

Successive iterations are carried out until pertinent values

of the fitting parameters are reached. However, the set of

triangles obtained does not form a mesh; it is a network of

best-fitted triangles. Fitting indicators give information on

the developability of each unfolded patch; then the

unfolded patches of stratum are fitted along the faults. If

it cannot be successfully restored, the structure is redrawn

as many times as necessary (Gratier and Guillier, 1993).
†
 The DEVELOPABLE-MESH program starts from the

same initial set of data (structure contour map). However,

after mesh building, a step is added that tries to improve

mesh developability. If successful, this step allows a near

perfect developable mesh to be built. Consequently, the

restoration of the mesh to its initial horizontal state is

presumed to be much easier than with the UNFOLD

method.

For the UNFOLD technique, the GMT system was used in

order to grid the surface. The UNFOLD program was then

used without too many problems. Most of the folded surfaces

were unfolded with sufficiently low fitting indicator values to

support the assumption of developable surfaces. However,

one patch—stratum 3—could not be unfolded directly and

had to be divided into two patches that were unfolded

independently and fitted together. When all the blocks were

unfolded, the best fit of the unfolded blocks was made with a

graphic interactive system (the unfolded patches were

adjusted to one another ‘by hand’ using rotations and

translations). The first structure contour map was not perfect.

The geometry of the faults was corrected in order to minimize

the voids and overlaps between the unfolded blocks. Most of

the problems derived from the initial geometry of the Rincon

fault and from the Red Mountain fault (in its zone of

maximum displacement). Most of the misfits were corrected

in the last version of the surface horizon which is given in

Fig. 7 as a perspective view (top) and map views of both the

deformed (present) state and undeformed (restored) state,

with indication of the relative displacement field from one
state to the other (the southern boundary being considered as

fixed).

It is interesting to note that the displacement value is fairly

constant all along the transition between the most discon-

tinuous deformation (Red Mountain Thrust) and the most

continuous one: Sulphur Mountain Fold (east) and the

Carpentaria Fold (west). In both cases, however, back thrusts

(Rincon to the west, Sisar and Big Canyon to the east),

contribute to the shortening of the folded structure helping to

equalize the displacement values all along the transition

between the main thrust and the folds. This transition

between the main thrust and the folds is associated with

‘buttonhole tear faults’: faults that have their two tips points

localized within the studied area. Along strike variations are

observed along the faults. They are accommodated both by

the folding and the faulting processes. The accuracy of the

global fitting is here a good test of the compatibility of the

deformed structures.

The DEVELOPABLE-MESH program was used and will

be especially detailed for the patch of stratum 3 that was

difficult to unfold with the UNFOLD program.

It is possible to visualize the data, which consist of a

structure contour map of the patch of stratum 3 (Fig. 8a and b)

and a plane-closed curve forming the boundary of the mesh

projection (Fig. 8c). Using these data, the DEVELOPABLE-

MESH program produces a mesh (Fig. 8f and g) that is

‘almost developable’ (the maximum length deformation for a

vertex is 1% and the average length deformation per vertex is

0.1%). Therefore, this mesh is unfolded directly by the sub-

routine of Sheffer and De Sturler (2001) in Fig. 8h. Note that

there is no need to divide the patch of stratum 3 into two

meshes, to unfold both meshes separately and then to fit them

together after unfolding as was necessary with UNFOLD.

The intermediate steps of the DEVELOPABLE-MESH

program concerning the patch of stratum 3 can be visualized.

In Fig. 8d, the ‘flat zones’ and the ‘rules’ determined during

the two first steps of the Triangulate sub-routine are

visualized. Fig. 8e also shows the mesh produced by

Triangulate (before optimization of the developability).

This mesh is then slightly modified by the Modify sub-

routine (Fig. 8f). The developability errors are also shown in

Fig. 8g.

The five other patches of strata have also been modeled

and unfolded with DEVELOPABLE-MESH. The intermedi-

ate results concerning these patches have not been shown, but

it is worth noting that their length deformation is small: for

each patch, the maximum length deformation for a vertex is

less than 1.8% (and is less than 0.5% for two patches) and the

average length deformation per vertex is less than 0.13%.

It is interesting to note that the shapes of the six patches

are coherent: the patches can be adjusted to one another ‘by

hand’ (using rotations and translations with a simple

interactive graphic program). The initial stratum was there-

fore restored by gluing the six patches together (Fig. 8i).



Fig. 7. Modeling the Red Mountain Thrust area using the UNFOLD program: perspective view of the present deformed state (top) and the initial restored state

(bottom). Names of faults and folds: RMFZRed Mountain fault, RFZRincon Fault, SFZSisar Fault, BCFZBig Canyon Fault, SMfZSulphur Mountain fold,

CfZCarpenteria fold.
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5. Discussion

The unfolded patches obtained with DEVELOPABLE-

MESH are very similar to those obtained with UNFOLD.

However, several differences can be noted between the two

programs.

First, UNFOLD does not allow the patch of stratum 3 to be

unfolded in one piece (it had to be divided into two patches

that were unfolded independently and fitted together).

DEVELOPABLE-MESH builds and unfolds the six patches

of strata without any problem.

The 3Dmeshes produced by DEVELOPABLE-MESH are

‘almost developable’ (in the sense that the length deformation

is, for example, for the stratum 3, less than 1% for every patch

with average length deformation per vertex of 0.1%).

The DEVELOPABLE-MESH program is based on

geometrical properties of developable smooth surfaces: it

determines ‘zones’ with characteristics of developable

smooth surfaces. From an opposite viewpoint, it depends

on several parameters (that are linked to tolerated errors and

to the scale of data).

It is worth noting that the choice of developable layers is a

crucial parameter. So, the interest of adding such a constraint

relies on the quality of the geological analysis.
The main interest of this new program is to allow a direct

construction of developable surfaces. This has several

advantages. The first one is to gain time in processing the

data when this program is used in order to restore the folded

structures to their initial state. The second one is to use this

program in 3D numerical models of fluid transfer within

deformed sedimentary basin. With such a modeling, the

present (deformed) state is first restored backward to its initial

state. Then a forward modeling is done in order to study fluid

transfer through the progressive deformation. The use of one

or two developable layers in the sedimentary pile allows a

direct backward restoration without the drawbacks of the trial

and error approach that is needed with the classical methods

of unfolding.
6. Conclusion

The DEVELOPABLE-MESH program models develop-

able strata in 3D by using both scattered data and geometrical

properties of developable smooth surfaces. The program

comprises three steps: Step 1 builds a mesh using certain

geometrical properties of developable meshes; Step 2



Fig. 8. Modeling the Red Mountain Thrust using the DEVELOPABLE-MESH program. See Fig. 7 for the names of the structures. (a) The level curves

(structure contour map) of the patch of stratum 3 seen from above. (b) The level curves of the patch of stratum 3. (c) The closed curve (that will be the

projection of the patch of stratum 3). (d) The ‘flat zones’ and the rules (segments) determined by the Triangulate sub-routine. (e) The mesh obtained by the

Triangulate sub-routine.(f) The mesh obtained after disturbance using the Modify sub-routine. (g) Visualization of the coefficient of length deformation (for

every vertex p, coef(p)!1.05%); if a vertex p satisfies 0.28%!coef(p)!0.83%, then there is a thin vertical segment; if a vertex p satisfies 0.83%!coef(p)!
1.05%, then there is a thick vertical segment. (i) Restoration of the initial state.
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optimizes the developability of the mesh by ‘slightly

disturbing’ it; Step 3 unfolds the mesh.

DEVELOPABLE-MESH was tested on the natural

example of the lateral evolution of a thrust system to a fold

structure (Red Mountain in the Ventura basin). Such a

structure was first balanced by a trial and error method

(UNFOLD). The transition between the main thrust and the

folds was found to be associated with ‘buttonhole tear faults’

localized within the area studied.
The restoration of every patch of the stratum and the fact

that the previously balanced patches can be fitted easily

together would appear to validate this program. Due to the

direct construction that includes developability criteria, the

DEVELOPABLE-MESH program built meshes that have a

small coefficient of length deformation (i.e. ‘almost devel-

opable‘). It also ran faster and allowed more complex

developable surfaces to be constructed than other unfolding

techniques that use a common interpolator.
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